Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Crit Care ; 27(1): 140, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2299121

ABSTRACT

Prone positioning is an evidence-based treatment for patients with moderate-to-severe acute respiratory distress syndrome. Lung recruitment has been proposed as one of the mechanisms by which prone positioning reduces mortality in this group of patients. Recruitment-to-inflation ratio (R/I) is a method to measure potential for lung recruitment induced by a change in positive end-expiratory pressure (PEEP) on the ventilator. The association between R/I and potential for lung recruitment in supine and prone position has not been studied with computed tomography (CT) scan imaging. In this secondary analysis, we sought to investigate the correlation between R/I measured in supine and prone position with CT and the potential for lung recruitment as measured by CT scan. Among 23 patients, the median R/I did not significantly change from supine (1.9 IQR 1.6-2.6) to prone position (1.7 IQR 1.3-2.8) (paired t test p = 0.051) but the individual changes correlated with the different response to PEEP. In supine and in prone position, R/I significantly correlated with the proportion of lung tissue recruitment induced by the change of PEEP. Lung tissue recruitment induced by a change of PEEP from 5 to 15 cmH2O was 16% (IQR 11-24%) in supine and 14.3% (IQR 8.4-22.6%) in prone position, as measured by CT scan analysis (paired t test p = 0.56). In this analysis, PEEP-induced recruitability as measured by R/I correlated with PEEP-induced lung recruitment as measured by CT scan, and could help to readjust PEEP in prone position.


Subject(s)
Lung , Respiratory Distress Syndrome , Humans , Prone Position/physiology , Lung/diagnostic imaging , Respiratory Distress Syndrome/therapy , Positive-Pressure Respiration/methods , Tomography, X-Ray Computed/methods
2.
Crit Care ; 27(1): 152, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2304485

ABSTRACT

BACKGROUND: Heterogeneity is an inherent nature of ARDS. Recruitment-to-inflation ratio has been developed to identify the patients who has lung recruitablity. This technique might be useful to identify the patients that match specific interventions, such as higher positive end-expiratory pressure (PEEP) or prone position or both. We aimed to evaluate the physiological effects of PEEP and body position on lung mechanics and regional lung inflation in COVID-19-associated ARDS and to propose the optimal ventilatory strategy based on recruitment-to-inflation ratio. METHODS: Patients with COVID-19-associated ARDS were consecutively enrolled. Lung recruitablity (recruitment-to-inflation ratio) and regional lung inflation (electrical impedance tomography [EIT]) were measured with a combination of body position (supine or prone) and PEEP (low 5 cmH2O or high 15 cmH2O). The utility of recruitment-to-inflation ratio to predict responses to PEEP were examined with EIT. RESULTS: Forty-three patients were included. Recruitment-to-inflation ratio was 0.68 (IQR 0.52-0.84), separating high recruiter versus low recruiter. Oxygenation was the same between two groups. In high recruiter, a combination of high PEEP with prone position achieved the highest oxygenation and less dependent silent spaces in EIT (vs. low PEEP in both positions) without increasing non-dependent silent spaces in EIT. In low recruiter, low PEEP in prone position resulted in better oxygenation (vs. both PEEPs in supine position), less dependent silent spaces (vs. low PEEP in supine position) and less non-dependent silent spaces (vs. high PEEP in both positions). Recruitment-to-inflation ratio was positively correlated with the improvement in oxygenation and respiratory system compliance, the decrease in dependent silent spaces, and was inversely correlated with the increase in non-dependent silent spaces, when applying high PEEP. CONCLUSIONS: Recruitment-to-inflation ratio may be useful to personalize PEEP in COVID-19-associated ARDS. Higher PEEP in prone position and lower PEEP in prone position decreased the amount of dependent silent spaces (suggesting lung collapse) without increasing the amount of non-dependent silent spaces (suggesting overinflation) in high recruiter and in low recruiter, respectively.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Prospective Studies , COVID-19/complications , COVID-19/therapy , Lung/diagnostic imaging , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Positive-Pressure Respiration/methods
3.
Crit Care ; 27(1): 118, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2256007

ABSTRACT

BACKGROUND: The profile of changes in airway driving pressure (dPaw) induced by positive-end expiratory pressure (PEEP) might aid for individualized protective ventilation. Our aim was to describe the dPaw versus PEEP curves behavior in ARDS from COVID-19 patients. METHODS: Patients admitted in three hospitals were ventilated with fraction of inspired oxygen (FiO2) and PEEP initially adjusted by oxygenation-based table. Thereafter, PEEP was reduced from 20 until 6 cmH2O while dPaw was stepwise recorded and the lowest PEEP that minimized dPaw (PEEPmin_dPaw) was assessed. Each dPaw vs PEEP curve was classified as J-shaped, inverted-J-shaped, or U-shaped according to the difference between the minimum dPaw and the dPaw at the lowest and highest PEEP. In one hospital, hyperdistention and collapse at each PEEP were assessed by electrical impedance tomography (EIT). RESULTS: 184 patients (41 including EIT) were studied. 126 patients (68%) exhibited a J-shaped dPaw vs PEEP profile (PEEPmin_dPaw of 7.5 ± 1.9 cmH2O). 40 patients (22%) presented a U (PEEPmin_dPaw of 12.2 ± 2.6 cmH2O) and 18 (10%) an inverted-J profile (PEEPmin_dPaw of 14,6 ± 2.3 cmH2O). Patients with inverted-J profiles had significant higher body mass index (BMI) and lower baseline partial pressure of arterial oxygen/FiO2 ratio. PEEPmin_dPaw was associated with lower fractions of both alveolar collapse and hyperinflation. CONCLUSIONS: A PEEP adjustment procedure based on PEEP-induced changes in dPaw is feasible and may aid in individualized PEEP for protective ventilation. The PEEP required to minimize driving pressure was influenced by BMI and was low in the majority of patients.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Respiration, Artificial , COVID-19/therapy , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Oxygen/therapeutic use
4.
Eur J Anaesthesiol ; 40(7): 511-520, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2237704

ABSTRACT

BACKGROUND: A continuous gas flow provided by flow-controlled ventilation (FCV) facilitates accurate dynamic compliance measurement and allows the clinician to individually optimise positive end-expiratory and peak pressure settings accordingly. OBJECTIVE: The aim of this study was to compare the efficiency of gas exchange and impact on haemodynamics between individualised FCV and pressure-controlled ventilation (PCV) in a porcine model of oleic acid-induced acute respiratory distress syndrome (ARDS). DESIGN: Randomised controlled interventional trial conducted on 16 pigs. SETTING: Animal operating facility at the Medical University Innsbruck. INTERVENTIONS: ARDS was induced in lung healthy pigs by intravenous infusion of oleic acid until moderate-to-severe ARDS at a stable Horowitz quotient (PaO 2 FiO 2-1 ) of 80 to 120 over a period of 30 min was obtained. Ventilation was then either performed with individualised FCV ( n  = 8) established by compliance-guided pressure titration or PCV ( n  = 8) with compliance-guided titration of the positive end-expiratory pressure and peak pressure set to achieve a tidal volume of 6 ml kg -1 over a period of 2 h. MAIN OUTCOME MEASURES: Gas exchange parameters were assessed by the PaO 2 FiO 2-1 quotient and CO 2 removal by the PaCO 2 value in relation to required respiratory minute volume. Required catecholamine support for haemodynamic stabilisation was measured. RESULTS: The FCV group showed significantly improved oxygenation [149.2 vs. 110.4, median difference (MD) 38.7 (8.0 to 69.5) PaO 2 FiO 2-1 ; P  = 0.027] and CO 2 removal [PaCO 2 7.25 vs. 9.05, MD -1.8 (-2.87 to -0.72) kPa; P  = 0.006] at a significantly lower respiratory minute volume [8.4 vs. 11.9, MD -3.6 (-5.6 to -1.5) l min -1 ; P  = 0.005] compared with PCV. In addition, in FCV-pigs, haemodynamic stabilisation occurred with a significant reduction of required catecholamine support [norepinephrine 0.26 vs. 0.86, MD -0.61 (-1.12 to -0.09) µg kg -1  min -1 ; P  = 0.037] during 2 ventilation hours. CONCLUSION: In this oleic acid-induced porcine ARDS model, individualised FCV significantly improved gas exchange and haemodynamic stability compared with PCV. TRIAL REGISTRATION: Protocol no.: BMBWF-66.011/0105-V/3b/2019).


Subject(s)
Oleic Acid , Respiratory Distress Syndrome , Animals , Catecholamines , Oleic Acid/toxicity , Positive-Pressure Respiration/methods , Respiration, Artificial/methods , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/therapy , Swine , Tidal Volume
5.
Crit Care ; 26(1): 211, 2022 07 11.
Article in English | MEDLINE | ID: covidwho-1925796

ABSTRACT

PURPOSE: In the acute respiratory distress syndrome (ARDS), decreasing Ventilation-Perfusion [Formula: see text] mismatch might enhance lung protection. We investigated the regional effects of higher Positive End Expiratory Pressure (PEEP) on [Formula: see text] mismatch and their correlation with recruitability. We aimed to verify whether PEEP improves regional [Formula: see text] mismatch, and to study the underlying mechanisms. METHODS: In fifteen patients with moderate and severe ARDS, two PEEP levels (5 and 15 cmH2O) were applied in random order. [Formula: see text] mismatch was assessed by Electrical Impedance Tomography at each PEEP. Percentage of ventilation and perfusion reaching different ranges of [Formula: see text] ratios were analyzed in 3 gravitational lung regions, leading to precise assessment of their distribution throughout different [Formula: see text] mismatch compartments. Recruitability between the two PEEP levels was measured by the recruitment-to-inflation ratio method. RESULTS: In the non-dependent region, at higher PEEP, ventilation reaching the normal [Formula: see text] compartment (p = 0.018) increased, while it decreased in the high [Formula: see text] one (p = 0.023). In the middle region, at PEEP 15 cmH2O, ventilation and perfusion to the low [Formula: see text] compartment decreased (p = 0.006 and p = 0.011) and perfusion to normal [Formula: see text] increased (p = 0.003). In the dependent lung, the percentage of blood flowing through the non-ventilated compartment decreased (p = 0.041). Regional [Formula: see text] mismatch improvement was correlated to lung recruitability and changes in regional tidal volume. CONCLUSIONS: In patients with ARDS, higher PEEP optimizes the distribution of both ventilation (in the non-dependent areas) and perfusion (in the middle and dependent lung). Bedside measure of recruitability is associated with improved [Formula: see text] mismatch.


Subject(s)
Respiratory Distress Syndrome , Humans , Lung , Perfusion , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Respiratory Physiological Phenomena
6.
BMC Anesthesiol ; 22(1): 387, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2162295

ABSTRACT

BACKGROUND: We hypothesized that the measured expiratory time constant (TauE) could be a bedside parameter for the evaluation of positive end-expiratory pressure (PEEP) settings in mechanically ventilated COVID-19 patients during pressure-controlled ventilation (PCV). METHODS: A prospective study was conducted including consecutively admitted adults (n = 16) with COVID-19-related ARDS requiring mechanical ventilation. A PEEP titration using PCV with a fixed driving pressure of 14 cmH2O was performed and TauE recorded at each PEEP level (0 to 18 cmH2O) in prone (n = 29) or supine (n = 24) positions. The PEEP setting with the highest TauE (TauEMAX) was considered to represent the best tradeoff between recruitment and overdistention. RESULTS: Two groups of patterns were observed in the TauE plots: recruitable (R) (75%) and nonrecruitable (NR) (25%). In the R group, the optimal PEEP and PEEP ranges were 8 ± 3 cmH2O and 6-10 cmH2O for the prone position and 9 ± 3 cmH2O and 7-12 cmH2O for the supine position. In the NR group, the optimal PEEP and PEEP ranges were 4 ± 4 cmH2O and 1-8 cmH2O for the prone position and 5 ± 3 cmH2O and 1-7 cmH2O for the supine position, respectively. The R group showed significantly higher optimal PEEP (p < 0.004) and PEEP ranges (p < 0.001) than the NR group. Forty-five percent of measurements resulted in the most optimal PEEP being significantly different between the positions (p < 0.01). Moderate positive correlation has been found between TauE vs CRS at all PEEP levels (r2 = 0.43, p < 0.001). CONCLUSIONS: TauE may be a novel method to assess PEEP levels. There was wide variation in patient responses to PEEP, which indicates the need for personalized evaluation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Humans , Positive-Pressure Respiration/methods , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Prospective Studies , Feasibility Studies , COVID-19/therapy
7.
Crit Care ; 26(1): 363, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2139382

ABSTRACT

BACKGROUND: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) require respiratory support with invasive mechanical ventilation and show varying responses to recruitment manoeuvres. In patients with ARDS not related to COVID-19, two pulmonary subphenotypes that differed in recruitability were identified using latent class analysis (LCA) of imaging and clinical respiratory parameters. We aimed to evaluate if similar subphenotypes are present in patients with COVID-19-related ARDS. METHODS: This is the retrospective analysis of mechanically ventilated patients with COVID-19-related ARDS who underwent CT scans at positive end-expiratory pressure of 10 cmH2O and after a recruitment manoeuvre at 20 cmH2O. LCA was applied to quantitative CT-derived parameters, clinical respiratory parameters, blood gas analysis and routine laboratory values before recruitment to identify subphenotypes. RESULTS: 99 patients were included. Using 12 variables, a two-class LCA model was identified as best fitting. Subphenotype 2 (recruitable) was characterized by a lower PaO2/FiO2, lower normally aerated lung volume and lower compliance as opposed to a higher non-aerated lung mass and higher mechanical power when compared to subphenotype 1 (non-recruitable). Patients with subphenotype 2 had more decrease in non-aerated lung mass in response to a standardized recruitment manoeuvre (p = 0.024) and were mechanically ventilated longer until successful extubation (adjusted SHR 0.46, 95% CI 0.23-0.91, p = 0.026), while no difference in survival was found (p = 0.814). CONCLUSIONS: A recruitable and non-recruitable subphenotype were identified in patients with COVID-19-related ARDS. These findings are in line with previous studies in non-COVID-19-related ARDS and suggest that a combination of imaging and clinical respiratory parameters could facilitate the identification of recruitable lungs before the manoeuvre.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Latent Class Analysis , Retrospective Studies , COVID-19/complications , Respiratory Distress Syndrome/diagnostic imaging , Positive-Pressure Respiration/methods
8.
Eur J Med Res ; 27(1): 193, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2053972

ABSTRACT

BACKGROUND: The ventilatory management of COVID-ARDS is controversial, especially with regard to the different subtypes and associated PEEP titration. A higher PEEP may be beneficial only in patients with potential for lung recruitment. The assessment of lung recruitment may be guided by lung imaging, such as electric impedance tomography or recruitment computed tomography, but is complex and not established in routine clinical practice. Therefore, bedside identification of recruitable ARDS phenotypes can aid in PEEP titration in clinical settings. METHODS: In this retrospective consecutive cohort study in 40 patients with moderate-to-severe COVID-ARDS, we assessed lung recruitment using the recruitment-to-inflation ratio (R/I) in moderate-to-severe COVID-ARDS. Evidence of recruitment (R/I ≥ 0.5) was compared between clinical and computed tomography data. RESULTS: Of the included patients, 28 (70%) were classified as recruiters by the R/I. Lung recruitment was associated with higher compliance and was not associated with a consolidated lung pattern assessed using CT. Even in the tertile of patients with the highest compliance (37-70 ml/mbar), eight (73%) patients were classified as recruitable. Patients classified as recruitable presented a lower reticular lung pattern (2% vs. 6%, p = 0.032). CONCLUSIONS: Prediction of lung recruitment is difficult based on routine clinical data but may be improved by assessment of radiographic lung patterns. A bedside assessment of recruitment is necessary to guide clinical care. Even a high compliance may not rule out the potential for lung recruitment.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cohort Studies , Humans , Lung/diagnostic imaging , Positive-Pressure Respiration/methods , Respiratory Mechanics , Retrospective Studies
9.
Am J Respir Crit Care Med ; 205(11): 1300-1310, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-2053493

ABSTRACT

Rationale: The most beneficial positive end-expiratory pressure (PEEP) selection strategy in patients with acute respiratory distress syndrome (ARDS) is unknown, and current practice is variable. Objectives: To compare the relative effects of different PEEP selection strategies on mortality in adults with moderate to severe ARDS. Methods: We conducted a network meta-analysis using a Bayesian framework. Certainty of evidence was evaluated using grading of recommendations assessment, development and evaluation methodology. Measurements and Main Results: We included 18 randomized trials (4,646 participants). Compared with a lower PEEP strategy, the posterior probability of mortality benefit from a higher PEEP without lung recruitment maneuver (LRM) strategy was 99% (risk ratio [RR], 0.77; 95% credible interval [CrI], 0.60-0.96, high certainty), the posterior probability of benefit of the esophageal pressure-guided strategy was 87% (RR, 0.77; 95% CrI, 0.48-1.22, moderate certainty), the posterior probability of benefit of a higher PEEP with brief LRM strategy was 96% (RR, 0.83; 95% CrI, 0.67-1.02, moderate certainty), and the posterior probability of increased mortality from a higher PEEP with prolonged LRM strategy was 77% (RR, 1.06; 95% CrI, 0.89-1.22, low certainty). Compared with a higher PEEP without LRM strategy, the posterior probability of increased mortality from a higher PEEP with prolonged LRM strategy was 99% (RR, 1.37; 95% CrI, 1.04-1.81, moderate certainty). Conclusions: In patients with moderate to severe ARDS, higher PEEP without LRM is associated with a lower risk of death than lower PEEP. A higher PEEP with prolonged LRM strategy is associated with increased risk of death when compared with higher PEEP without LRM.


Subject(s)
Positive-Pressure Respiration , Respiratory Distress Syndrome , Adult , Bayes Theorem , Humans , Lung , Network Meta-Analysis , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy
10.
Sci Rep ; 12(1): 14517, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-2016838

ABSTRACT

Patients with SARS-CoV-2 infection present with different lung compliance and progression of disease differs. Measures of lung mechanics in SARS-CoV-2 patients may unravel different pathophysiologic mechanisms during mechanical ventilation. The objective of this prospective observational study is to describe whether Electrical Impedance Tomography (EIT) guided positive end-expiratory pressure (PEEP) levels unravel changes in EIT-derived parameters over time and whether the changes differ between survivors and non-survivors. Serial EIT-measurements of alveolar overdistension, collapse, and compliance change in ventilated SARS-CoV-2 patients were analysed. In 80 out of 94 patients, we took 283 EIT measurements (93 from day 1-3 after intubation, 66 from day 4-6, and 124 from day 7 and beyond). Fifty-one patients (64%) survived the ICU. At admission mean PaO2/FiO2-ratio was 184.3 (SD 61.4) vs. 151.3 (SD 54.4) mmHg, (p = 0.017) and PEEP was 11.8 (SD 2.8) cmH2O vs. 11.3 (SD 3.4) cmH2O, (p = 0.475), for ICU survivors and non-survivors. At day 1-3, compliance was ~ 55 mL/cmH2O vs. ~ 45 mL/cmH2O in survivors vs. non-survivors. The intersection of overdistension and collapse curves appeared similar at a PEEP of ~ 12-13 cmH2O. At day 4-6 compliance changed to ~ 50 mL/cmH2O vs. ~ 38 mL/cmH2O. At day 7 and beyond, compliance was ~ 38 mL/cmH2O with the intersection at a PEEP of ~ 9 cmH2O vs. ~ 25 mL/cmH2O with overdistension intersecting at collapse curves at a PEEP of ~ 7 cmH2O. Surviving SARS-CoV-2 patients show more favourable EIT-derived parameters and a higher compliance compared to non-survivors over time. This knowledge is valuable for discovering the different groups.


Subject(s)
COVID-19 , Electric Impedance , Humans , Positive-Pressure Respiration/methods , SARS-CoV-2 , Tomography/methods , Tomography, X-Ray Computed/methods
11.
Anesthesiology ; 137(3): 327-339, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2001451

ABSTRACT

BACKGROUND: The mechanisms underlying oxygenation improvement after prone positioning in COVID-19 acute respiratory distress syndrome have not been fully elucidated yet. The authors hypothesized that the oxygenation increase with prone positioning is secondary to the improvement of ventilation-perfusion matching. METHODS: In a series of consecutive intubated COVID-19 acute respiratory distress syndrome patients receiving volume-controlled ventilation, the authors prospectively assessed the percent variation of ventilation-perfusion matching by electrical impedance tomography before and 90 min after the first cycle of prone positioning (primary endpoint). The authors also assessed changes in the distribution and homogeneity of lung ventilation and perfusion, lung overdistention and collapse, respiratory system compliance, driving pressure, optimal positive end-expiratory pressure, as assessed by electrical impedance tomography, and the ratio of partial pressure to fraction of inspired oxygen (Pao2/Fio2; secondary endpoints). Data are reported as medians [25th to 75th] or percentages. RESULTS: The authors enrolled 30 consecutive patients, all analyzed without missing data. Compared to the supine position, prone positioning overall improved ventilation-perfusion matching from 58% [43 to 69%] to 68% [56 to 75%] (P = 0.042), with a median difference of 8.0% (95% CI, 0.1 to 16.0%). Dorsal ventilation increased from 39% [31 to 43%] to 52% [44 to 62%] (P < 0.001), while dorsal perfusion did not significantly vary. Prone positioning also reduced lung overdistension from 9% [4 to 11%] to 4% [2 to 6%] (P = 0.025), while it did not significantly affect ventilation and perfusion homogeneity, lung collapse, static respiratory system compliance, driving pressure, and optimal positive end-expiratory pressure. Pao2/Fio2 overall improved from 141 [104 to 182] mmHg to 235 [164 to 267] mmHg (P = 0.019). However, 9 (30%) patients were nonresponders, experiencing an increase in Pao2/Fio2 less than 20% with respect to baseline. CONCLUSIONS: In COVID-19 acute respiratory distress syndrome patients, prone positioning overall produced an early increase in ventilation-perfusion matching and dorsal ventilation. These effects were, however, heterogeneous among patients.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Positive-Pressure Respiration/methods , Prone Position/physiology , Pulmonary Gas Exchange/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy
13.
Crit Care Med ; 50(11): 1599-1606, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1958556

ABSTRACT

OBJECTIVES: Head-elevated body positioning, a default clinical practice, predictably increases end-expiratory transpulmonary pressure and aerated lung volume. In acute respiratory distress syndrome (ARDS), however, the net effect of such vertical inclination on tidal mechanics depends upon whether lung recruitment or overdistension predominates. We hypothesized that in moderate to severe ARDS, bed inclination toward vertical unloads the chest wall but adversely affects overall respiratory system compliance (C rs ). DESIGN: Prospective physiologic study. SETTING: Two medical ICUs in the United States. PATIENTS: Seventeen patients with ARDS, predominantly moderate to severe. INTERVENTION: Patients were ventilated passively by volume control. We measured airway pressures at baseline (noninclined) and following bed inclination toward vertical by an additional 15°. At baseline and following inclination, we manually loaded the chest wall to determine if C rs increased or paradoxically declined, suggestive of end-tidal overdistension. MEASUREMENTS AND MAIN RESULTS: Inclination resulted in a higher plateau pressure (supineΔ: 2.8 ± 3.3 cm H 2 O [ p = 0.01]; proneΔ: 3.3 ± 2.5 cm H 2 O [ p = 0.004]), higher driving pressure (supineΔ: 2.9 ± 3.3 cm H 2 O [ p = 0.01]; proneΔ: 3.3 ± 2.8 cm H 2 O [ p = 0.007]), and lower C rs (supine Δ: 3.4 ± 3.7 mL/cm H 2 O [ p = 0.01]; proneΔ: 3.1 ± 3.2 mL/cm H 2 O [ p = 0.02]). Following inclination, manual loading of the chest wall restored C rs and driving pressure to baseline (preinclination) values. CONCLUSIONS: In advanced ARDS, bed inclination toward vertical adversely affects C rs and therefore affects the numerical values for plateau and driving tidal pressures commonly targeted in lung protective strategies. These changes are fully reversed with manual loading of the chest wall, suggestive of end-tidal overdistension in the upright position. Body inclination should be considered a modifiable determinant of transpulmonary pressure and lung protection, directionally similar to tidal volume and positive end-expiratory pressure.


Subject(s)
Positive-Pressure Respiration , Respiratory Distress Syndrome , Humans , Lung , Positive-Pressure Respiration/methods , Prospective Studies , Respiratory Distress Syndrome/therapy , Respiratory Mechanics/physiology , Tidal Volume/physiology
14.
Crit Care Med ; 48(12): e1332-e1336, 2020 12.
Article in English | MEDLINE | ID: covidwho-1895840

ABSTRACT

OBJECTIVES: Clinical observation suggests that early acute respiratory distress syndrome induced by the severe acute respiratory syndrome coronavirus 2 may be "atypical" due to a discrepancy between a relatively unaffected static respiratory system compliance and a significant hypoxemia. This would imply an "atypical" response to the positive end-expiratory pressure. DESIGN: Single-center, unblinded, crossover study. SETTING: ICU of Bari Policlinico Academic Hospital (Italy), dedicated to care patients with confirmed diagnosis of novel coronavirus disease 2019. PATIENTS: Eight patients with early severe acute respiratory syndrome coronavirus 2 acute respiratory distress syndrome and static respiratory compliance higher than or equal to 50 mL/cm H2O. INTERVENTIONS: We compared a "lower" and a "higher" positive end-expiratory pressure approach, respectively, according to the intervention arms of the acute respiratory distress syndrome network and the positive end-expiratory pressure setting in adults with acute respiratory distress syndrome studies. MEASUREMENTS AND MAIN RESULTS: Patients were ventilated with the acute respiratory distress syndrome network and, subsequently, with the ExPress protocol. After 1 hour of ventilation, for each protocol, we recorded arterial blood gas, respiratory mechanics, alveolar recruitment, and hemodynamic variables. Comparisons were performed with analysis of variance for repeated measures or Friedman test as appropriate. Positive end-expiratory pressure was increased from 9 ± 3.5 to 17.7 ± 1.7 cm H2O (p < 0.01). Alveolar recruitment was 450 ± 111 mL. Static respiratory system compliance decreased from 58.3 ± 7.6 mL/cm H2O to 47.4 ± 14.5 mL/cm H2O (p = 0.018) and the "stress index" increased from 0.97 ± 0.03 to 1.22 ± 0.07 (p < 0.001). The PaO2/FIO2 ratio increased from 131 ± 22 to 207 ± 41 (p < 0.001), and the PaCO2 increased from 45.9 ± 12.7 to 49.8 ± 13.2 mm Hg (p < 0.001). The cardiac index went from 3.6 ± 0.4 to 2.9 ± 0.6 L/min/m (p = 0.01). CONCLUSIONS: Our data suggest that the "higher" positive end-expiratory pressure approach in patients with severe acute respiratory syndrome coronavirus 2 acute respiratory distress syndrome and high compliance improves oxygenation and lung aeration but may result in alveolar hyperinflation and hemodynamic alterations.


Subject(s)
COVID-19/complications , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Adult , Aged , Aged, 80 and over , Blood Gas Analysis , Cross-Over Studies , Female , Humans , Male , Middle Aged , Respiratory Mechanics/physiology , SARS-CoV-2
15.
J Cardiothorac Vasc Anesth ; 36(8 Pt A): 2278-2286, 2022 08.
Article in English | MEDLINE | ID: covidwho-1890307

ABSTRACT

OBJECTIVE: Noninvasive positive-pressure ventilation (NPPV) emerged as an efficient tool for treatment of COVID-19 pneumonia. The factors influencing NPPV failure still are elusive. The aim of the study was to investigate the relationships between semiquantitative chest computed tomography (CT) scoring and NPPV failure and mortality in patients with COVID-19. DESIGN: Observational study. SETTING: Nonintensive care setting. PARTICIPANTS: A total of 112 patients consecutively admitted for COVID-19 pneumonia. INTERVENTIONS: Usual care including various degrees of respiratory support. MEASUREMENTS AND MAIN RESULTS: The semiquantitative CT score was calculated at hospital admission. Subgroups were identified according to the ventilation strategy used (oxygen delivered by Venturi mask n = 53; NPPV-responder n = 38; NPPV-failure n = 21). The study's primary endpoint was the use of NPPV. The secondary endpoints were NPPV failure and in-hospital death, respectively. CT score progressively increased among groups (six v nine v 14, p < 0.05 among all). CT score was an independent predictor of all study endpoints (primary endpoint: 1.25 [95% confidence interval {CI} 1.1-1.4], p = 0.001; NPPV failure: 1.41 [95% CI 1.18-1.69], p < 0.001; in-hospital mortality: 1.21 [95% CI 1.07-1.38], p = 0.003). According to receiver operator characteristics curve analysis, CT score was the most accurate variable for prediction of NPPV failure (area under the curve 0.862 with p < 0.001; p < 0.05 v other variables). CONCLUSIONS: The authors reported the common and effective use of NPPV in patients with COVID-19 pneumonia. In the authors' population, a semiquantitative chest CT analysis at hospital admission accurately identified those patients responding poorly to NPPV.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/diagnostic imaging , COVID-19/therapy , Hospital Mortality , Humans , Noninvasive Ventilation/methods , Positive-Pressure Respiration/methods , Respiratory Insufficiency/therapy , Tomography , Tomography, X-Ray Computed
16.
J Bras Pneumol ; 48(2): e20210374, 2022.
Article in English, Portuguese | MEDLINE | ID: covidwho-1819119

ABSTRACT

OBJECTIVE: To identify factors that lead to a positive oxygenation response and predictive factors of mortality after prone positioning. METHODS: This was a retrospective, multicenter, cohort study involving seven hospitals in Brazil. Inclusion criteria were being > 18 years of age with a suspected or confirmed diagnosis of COVID-19, being on invasive mechanical ventilation, having a PaO2/FIO2 ratio < 150 mmHg, and being submitted to prone positioning. After the first prone positioning session, a 20 mmHg improvement in the PaO2/FIO2 ratio was defined as a positive response. RESULTS: The study involved 574 patients, 412 (72%) of whom responded positively to the first prone positioning session. Multiple logistic regression showed that responders had lower Simplified Acute Physiology Score III (SAPS III)/SOFA scores and lower D-dimer levels (p = 0.01; p = 0.04; and p = 0.04, respectively). It was suggested that initial SAPS III and initial PaO2/FIO2 were predictors of oxygenation response. The mortality rate was 69.3%. Increased risk of mortality was associated with age (OR = 1.04 [95 CI: 1.01-1.06]), time to first prone positioning session (OR = 1.18 [95 CI: 1.06-1.31]), number of sessions (OR = 1.31 [95% CI: 1.00-1.72]), proportion of pulmonary impairment (OR = 1.55 [95% CI: 1.02-2.35]), and immunosuppression (OR = 3.83 [95% CI: 1.35-10.86]). CONCLUSIONS: Our results show that most patients in our sample had a positive oxygenation response after the first prone positioning session. However, the mortality rate was high, probably due to the health status and the number of comorbidities of the patients, as well as the severity of their disease. Our results also suggest that SAPS III and the initial PaO2/FIO2 predict the oxygenation response; in addition, age, time to first prone positioning, number of sessions, pulmonary impairment, and immunosuppression can predict mortality.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cohort Studies , Humans , Positive-Pressure Respiration/methods , Prone Position/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Retrospective Studies
17.
Crit Care Med ; 50(5): 723-732, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1706638

ABSTRACT

OBJECTIVES: Prone positioning allows to improve oxygenation and decrease mortality rate in COVID-19-associated acute respiratory distress syndrome (C-ARDS). However, the mechanisms leading to these effects are not fully understood. The aim of this study is to assess the physiologic effects of pronation by the means of CT scan and electrical impedance tomography (EIT). DESIGN: Experimental, physiologic study. SETTING: Patients were enrolled from October 2020 to March 2021 in an Italian dedicated COVID-19 ICU. PATIENTS: Twenty-one intubated patients with moderate or severe C-ARDS. INTERVENTIONS: First, patients were transported to the CT scan facility, and image acquisition was performed in prone, then supine position. Back to the ICU, gas exchange, respiratory mechanics, and ventilation and perfusion EIT-based analysis were provided toward the end of two 30 minutes steps (e.g., in supine, then prone position). MEASUREMENTS AND MAIN RESULTS: Prone position induced recruitment in the dorsal part of the lungs (12.5% ± 8.0%; p < 0.001 from baseline) and derecruitment in the ventral regions (-6.9% ± 5.2%; p < 0.001). These changes led to a global increase in recruitment (6.0% ± 6.7%; p < 0.001). Respiratory system compliance did not change with prone position (45 ± 15 vs 45 ± 18 mL/cm H2O in supine and prone position, respectively; p = 0.957) suggesting a decrease in atelectrauma. This hypothesis was supported by the decrease of a time-impedance curve concavity index designed as a surrogate for atelectrauma (1.41 ± 0.16 vs 1.30 ± 0.16; p = 0.001). Dead space measured by EIT was reduced in the ventral regions of the lungs, and the dead-space/shunt ratio decreased significantly (5.1 [2.3-23.4] vs 4.3 [0.7-6.8]; p = 0.035), showing an improvement in ventilation-perfusion matching. CONCLUSIONS: Several changes are associated with prone position in C-ARDS: increased lung recruitment, decreased atelectrauma, and improved ventilation-perfusion matching. These physiologic effects may be associated with more protective ventilation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Electric Impedance , Humans , Lung/diagnostic imaging , Perfusion , Positive-Pressure Respiration/methods , Prone Position , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed
18.
Arch Dis Child Fetal Neonatal Ed ; 107(6): 589-596, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1642826

ABSTRACT

IMPORTANCE: Animal and observational human studies report that delivery of excessive tidal volume (VT) at birth is associated with lung and brain injury. Using a respiratory function monitor (RFM) to guide VT delivery might reduce injury and improve outcomes. OBJECTIVE: To determine whether use of an RFM in addition to clinical assessment versus clinical assessment alone during mask ventilation in the delivery room reduces in-hospital mortality and morbidity of infants <37 weeks' gestation. STUDY SELECTION: Randomised controlled trials (RCTs) comparing RFM in addition to clinical assessment versus clinical assessment alone during mask ventilation in the delivery room of infants born <37 weeks' gestation. DATA ANALYSIS: Risk of bias was assessed using Covidence Collaboration tool and pooled into a meta-analysis using a random-effects model. The primary outcome was death prior to discharge. MAIN OUTCOME: Death before hospital discharge. RESULTS: Three RCTs enrolling 443 infants were combined in a meta-analysis. The pooled analysis showed no difference in rates of death before discharge with an RFM versus no RFM, relative risk (RR) 95% (CI) 0.98 (0.64 to 1.48). The pooled analysis suggested a significant reduction for brain injury (a combination of intraventricular haemorrhage and periventricular leucomalacia) (RR 0.65 (0.48 to 0.89), p=0.006) and for intraventricular haemorrhage (RR 0.69 (0.50 to 0.96), p=0.03) in infants receiving positive pressure ventilation with an RFM versus no RFM. CONCLUSION: In infants <37 weeks, an RFM in addition to clinical assessment compared with clinical assessment during mask ventilation resulted in similar in-hospital mortality, significant reduction for any brain injury and intraventricular haemorrhage. Further trials are required to determine whether RFMs should be routinely available for neonatal resuscitation.


Subject(s)
Brain Injuries , Positive-Pressure Respiration , Infant , Infant, Newborn , Humans , Positive-Pressure Respiration/adverse effects , Positive-Pressure Respiration/methods , Tidal Volume , Intermittent Positive-Pressure Ventilation/methods , Hemorrhage
SELECTION OF CITATIONS
SEARCH DETAIL